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We desc ribhe at p re-on d it ined Krvlov 1'e rat i e alo ri thfi blased on dlomiain Lilcoin posit, oil foi
plicit linear sst eiiis a ri sinrg from partial differential eq nation problems whuch reqiire local r1os Ii
refinenrent. In order to keep data, st ructutres as simpflpe as possible for parallel comnput inrg appi e;'-
ions. tie( firnrdamen tal comnputationial unit in tHie algoritlinm is a subfregion of the diomain sjpaitedfb

a locally uniform tensor- product grid, suggestively called a tile. This is in contrast to local refl n-
rileri t techfn iques wvhose fuindamnirtal computational uinit is a grid at a given level of refinemient. The
book-keeping- requirenreris of such algorithmns are potentially substantial, since consistency of dla~
inu ,t be enforced at points of space whiich may belong several different grids, and furthierinore. ie(

,zrids are not necessarily of tensor-product type, but miore generally. uons thiereof. Thie tile- ba.,ed
(forniali decomposition approachi condenses the number of levels in consideration at each point of
hel dom11ain to two: a global coarse grid dlefinedl by tile vertices only and a local fine grid, whiere f it,

(fegree of resolution of the fine grid can vary from tile to tile. Experimientally, ;t is sh " -~re-io
hat (one global level and one loca! 1-vel -rcivide snffic.ient, flexibility to hiandle a diverse collectio of

t-wo-dimiensilonal prohileiis -which include irregula~r regions. non simTp ly-connected regions. ri->eolf-
at I oilit coperators. mixed boundary conditions, non1-smoothi coefficients, or non-smooth solui ioni,.
We eiriplov fromn 1 to 1024 tiles on problems containing irp to 161K (degrees of freedom. Though io-
ivated by local refinement and parallel processing applica tionis. benchmnark serial i mplemntirat ions

if the tile-based algorithim on uniform grids produce iteration counts and execution times whiicl
are comnpetitive wit lt those of traditional global preconditionings.
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1. Introduiction

1 hie colintilHat ion of domlainl decomposition Wvit i preconditionied iterative nmet hods providof0 ;I
fra iiwork w hiclh ext 'iids thie uiseflnless of ntiumeri cal techlniques for cert aini special partial (Ii ffer-
eti al eq cation problemns toi those of more general struic(tture. Non-smnooth featutres. noni-separa ble

rliet ne. or niass iye si/es1 0 pract ical problems limit the application of many "standard" imt-
morlt al toeehln(1 ues". Di)rec t methods are rapidly defeated by problem size. "Fast" methods wit Ict
ake ad vantalge of s peci al coefficient and grid strucltutre often do not apply globally. ItoraIlVe

mnethods often depend for efficient imipllement ation on regular gridis which. if global itt extent. ;ir'
Minsistent withI accuirate and economical resek,:tion ef the physics of thle p~roblem. Ilow ov r.
~he domaai ns of p1 ohlrrns wvi t these featutres can often be decom posed] into smalle r sn bdont aj
of limpler st,-uie . increasing the ut ility of extant software libraries. particularly as comipoie'it
o1 precondit inmers. Moreover. the dlomnain decomtposit ion canl be inade to produce -- t ranspa-tlt
iiiapp)ing of nmany problems onto mnediumn-scale parallel comuiters. Our primary' focus in this ptpor
is the incorporationt of spat ially-varying miesh refinement requirements into a fnt-ifrne ae
dlomtain decomnposit ion algorithm. We illustrate the convergence behavior of thle algorithbi ott a %a-
ntt vof two-dimensional elliptic PD E prot -iiis. including nion-self-adjoint. nolt-separalble geoiet rv
cases. We also poinit out features of the met hod whtich are relevant to a parallel Implementat ion
buit defer thte cerrespo nding complexity analysis to a subsequent companion paper.

Many PDE prob~lems which are .large" in the discrete sense are so because the continuou;
problems, from wich thiey are generatedl require resolution of several different lenigth scales for Ihli
producltiont of a neaning-ftil solution. The value of compromising between the extremes of globallY
uniformn refiniemeint, wicrh jeads to simiple and usually vectorizi ble algorithms but wastes time antd

* memnory, and pomi wise adaptive refinement, which minimizes the discrete problem size for a givetn
accuracy reqltireniien-t but leads to comp)licated data structures. has been recognized for some titlife
andl describedl in contexts too numerous to acknowledge fairly. Locally Uniformn Mesh Refine-.ent

* LUNIR) characterizes one such class of discretizations. based on composites of highly strutu tred]
sit bfrids. Mlany treatmeonts of L UNMR in the literature pertain to explicit methods for transient
problenms. a class withI its own advantages (see [3] and referenices therein) and limitations '3911
which is somewhat distinct from otirs. Implicit treatminats of locally regular re-finentent for elliptic
problems include -app roachles arising out of' classical ntultignid (see [31] and references t terei nL a.
ntonconforming spectral techniqtue [301, and methlods rooted in Iterative subst ruttetritig for tillite

elernient problems [5].
Coripta tion ally practical locally tiniform gridls are tisually expressible as the u nioni of a coarse

in iformT tensor-product grid covering the entire domain with one or more refitted teisor-proditie
rids dlefi ned over stibregions. ineludi ng the poss-ibility of mulItiple. nested levels. Generalizat ions

of thIiis withlin the 1.LI MI? framework Incltude allowin,_ thle gritls at ainy., particunlar level of refi ineent
to t11ltemsel0V'IS be i tlt ion of tenison- prod ii t sitbgrids . and reinlterpret ing "uiiiform'* as 'q tiatst- -

un1i form'C to alhow aoeneral en rvil inear coord inmates for customn bodyv- or soluition- fit t i g. W'es Slect -

for COTISI der4t ion a rat lie r rest iicted 'ormn of LU NIll in which refinemetit occurs excltisi velv withlI
0'poutope eel Is oIf a q iiasi -miiformn coarse grid, as dlescribled itt sect ion 2 below.

lute g oal (If t i present contributnion Is ;it LUMII? mithodologv with starkly, simple (data t1rtuc-
ties. for efficient portability t(1a varietyof parallel machlintes. It biorrowys front thle rites i refitni ent
a rid dfo u r t le T 1COnIpIoI S It ion1 i tera t tire atId frontl t IeI atuit hors' ow nt xpe r oilut e I n t hese v areas ane I ll "pairallel colmlpttatifn r20, 22. 2M]- . fiI our putli of collvelieltce andt overall piarallel perfortmantce.

H '.ll "11(1 uidl -'it i aldItte speed p an tit elicieltc v, we~ ;ire read.l. potentially,. to comiqtrontiise
optI itilit as ;, Irfi ijd by contivettiontu seria l ut lititeaSilres. For exllplv. by, refinlitig oiit

in mit,, tf fitl II ir ns gridl eelIs. we ill av Imlipote al t(eldeov t0wa mds refineenlt it regionts where, it-----



Figure 1: The anatomy of a tile. Unie. cloAd by a physical
boundary. a tile is open along its high-x and high-y perimeter.

would be unnecessary from a truncation error point of view alone. As another example, our con-
vergence rate is dependent upon a coarse grid resolution which may be chosen with criteria beyond
convergence rate in view, such as the balance of work among multiple processors. Fortunately. the
methodology survives such compromises and is even sequentially advantageous in many problems.

The domain decomposition algorithms we employ (sertiun 3) involve 'nearly" parallel precon-
ditioners in conjunction with generalized minimum residual (GNlRFS) iteration, a non-stationary
method not dependent upon operator symmetry. In two dimensions, the preconditioner involves
three separate phases: a global coarse grid solve, independent solves along interfaces between sub-
domains, and independent solves in the subdomain interiors. The global coarse grid solve, which
we do directly, is an essential feature as it provides the only global exchange of information in the
preconditioner itself. We will compare alternative formulations of the more negotiable interface
and subdomain solves.

The main body of the paper is the collection of numerical experiments on two-dimensional ellip-
tic boundary value problems in section 4. The experiments include standard model problems. "'-
shaped, "T"-shaped, and non-simply-connected regions, non-self-adjoint operators. mixed bound-
ary conditions, and problems with non-smooth coefficients or non-smooth solutions. We use from I
to 1024 coarse grid elements on probiems containing up to 16K degrees of freedom. Among our find-
ings is that the interface probe preconditioning advocated in our earlier work on convective-diffusive
systems with stripwise decompositions [28] does not perform as well on decompositions with inter-
nal vertices as the much simpler tangential operator preconditioning. We also demonstrate that
incomplete factorizations are not c -- T-ctive subdomain interior preconditioners, relative to exa,i
subdomain solves, once the subdon, aecome sufficiently narrow.

2. Mesh refinement by tiles

In this section we describe a simple mesh refinement philosophy based on a regular tessellation
of the global domain into subdomains which we call "tiles" in two dimensions. Mathematically.
a tile is the tensor-product of hLf-open intervals in ,ach coordinate direction, except that a tile
abutting a physical boundary along what would ordinarily be one of its open edges is closed along
that edge. Each tile possesses its own tensor-product discretized interior, at least two of its four
sides, and at least one of its four corners. Although the specific convention is arbitrary, we assume
for definiteness that in its own local right-handed coordinate system, each tile contains its origin
and its x and y axes (see Figure 1).

In cortrast to physical boundary segments, we refer to the artificial decomposition-induced
boundaries of the tiles as "interfaces". We refer to the points at the intersection of all bouidaric.
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(a) (b)

Figure 2: Sample Tessellationh. (a) is permissible, (b) is
not.

physical or artificial, as "cross-points". We require that the cross-points be embeddable in a tensor-
product global quasi-uniform coarse grid. from which only points lying exterior to the (possibly
multiply connec,4) 11oundary Pre missing. This rules out irregular tiling patterns such as in
Figure 2b. However, there is no requirement that the domain itself be of tensor-product type: the
decomposition in Figure 2a is permissible.

Associated with each tile is the data definee over a quasi-uniform grid rovering its porti,-
of the domain and a set of operators for executing its block-row portions of the preconditioner
solve to be described later. In our object-oriented approach, these operators can potentially be of
different types for different tiles. For computational convenience, we assume throughout that the

" grids covering individual tiles are derived from the coarse grid of cross-points through refinement in
ratios of powers of two. We can therefore indicate refinement levels using the graphical shorthand
of Figure 10 where the integer indicates the logarithm of the refinement ratio.

2.1. Tile-tile interfaces
In order to minimize restrictions on the structure of adjacent tiles (and to eliminate redundant

communication between tiles in a multiprocessor implementation, in which different tiles might be
assigned to different processors), each tile stores and maintains, in addition to its own data, the
data associated with a buffer region of phantom points equal in width to one-half of that of its
associated finite difference stencil (see Figure 3). Excluding the redundant phantom points. each
point of the domain is uniquely associated with a single tile.

Data at the phantom points is supplied in a manner dependent upon the internal structure and
refinement ratios of the adjacent tiles in question. A finer tile obtains bi-quadratically interpolated
data from its coarser neighbor. Since the problems studied herein involve second-order operators.
this allows the use of conventional finite difference techniques in generating the difference equations
at the subdomnain interfaces. Bi-linear interpolation alone would limit the potential accuracy of a
second-order differencing scheme, as observed in some preliminary experiments. We note that such
a difference scheme does not guarantee discrete flux conservation. Our focus herein is simply on
the solution of a consistent set of discrete equations. More careful attention to the discretization
has already been given in the context of locally regular refinement in [19].

All of our examples employ strictly uniform local grids. Although this is not a necessary
restriction of the method, this simplifies the exchange of data between adjacent tiles.

The coarse grid system obtains its data by simple (unweighted) injection. That is. the value
at th point in the finer neighboring tile that lies on the coarse grid stencil is used for the coarse
grid point. A weighted averaging could be em ploved to preserve operator syimetry. if that were



Figure 3: Sample tile, showing the computational buffer
region required for the standard five-point stencil.

necessary for other reasons, for instance. conjugate gradient iteration of a seiiadjoint problem.
A finite element discretization with transition elerents along the interface would unainoi, ..V
deliver the appropriate weighting coefficients in this case.

The selection of refinement criteria is a much studied, yet still open problem; see [2] and

[26] for a sampling of work in this area. The refinement criteria, however, are orthogonal to the
equation-solving aspect considered herein, except to the extent that a part of the computational
work re':Iuired by one of t,,se tasks may be a by-product of the other. Some issues in refinement
criteria will be discussed in a subsequer.t report [23]. For present purposes, v'- give one example

with a smooth solution but non-smooth coefficients -ind others with smooth coefficients but a
non-smooth solution. In these examples. "good" refinement strategies can be done "by hand".

In general, tile interfaces can be the site of changes in the discretization besides just the
refinement level. For instance, the discrete stencil can change order at interfaces. Even the form
of the operators or their number can change at interfaces while still preserving the , ubdomain
uniformity required for efficient subdomain solution algorithms. As a motivational exampie. a
reacting flow problem frequently consists of large regions in which there is only transport of mass.
momentum, and thermai energy but no reaction among constituents of known composition. to all
adequate orders of approximation. ti other regions it is essential to retain composition variables.
because they diffuse differentially, aind in a subset of these, reaction terms must also be retained
in the equations. To accommodate sbch generality, the routines that pack the buffer regions are
responsible for providing the necessary mappings.

2.2. Physical boundaries
For generality, the equations for the physical boundaries are incorporated into the overall

system matrix, including Dirichlet conditions. Our implementation allows inhomogeneous Robin
boundary conditions at all boundary points, namely,

Ott
a(x, y)- + b(x, y),u = c(x. y).

Both first- and seiond-order one-sided difference approximations to the normal derivative term are
mr plo' ,,d. The second-order approximation is used in the actual operator, and the first-o,,&r is
isd in tibe preconditioners (to preserve unifornity of the bandwidth of the matrices used in tHie
preconditioning). Though tempting in their simplicity. Dirichlet boundary conditions alone in the
preconditioner were found to perforin poorly in practice, in accord with exlpectation from the I heory

in [331 mid references therein.
4|



Figure 4: One-dimensional schematic of the tile basis func-
tions.

2.3. Comparison with other approaches
In contrast to multi-level approaches in which the fundamental computational unit is a grid

at a given level, our fundamental computational unit is a subregion of the domain. The present
approach requires only one grid which possesses connectivity with arbitrarily distant regions of Ihe
domain, namely the coarsest one. In the framework of the hierarchical basis function technique
[43]. we ha.e simiiply a twvo-level hierarchy, but the the higher level may be different in different
subregions. Figure 4 gives a one-dimensional illustration. This admittedly represents a severe
condensation of the range of intermediate scales present in multi-level local uniform refinement.
on which much of the asymptotic convergence theory is based. Tiles are much closer to being the
software equivalent of the "geometry-defining processors" (GDPs) of Dewey and Patera [_ '1

The tile approach is also similar to the additive Schwartz method [16. 41] and the techniques
of [61 in its reliance upon just a single domain-spanning grid. The main difference between these
techniques and the tile approach is in the treatment of the interfacial degrees of freedom. in the
additive Schwarz technique, interior problems are solved on extended overlapped subdomains. of
which the interfa-cial degrees of freedom are interior points and thus demand no special consider-
ation. In [6], good preconditioners for the interfacial degrees of freedom are derived theoretically.
for self-adjoint operators. Optimal algebraic convergence (independent of degree of refinement)
has been proved for both classes of algorithms in [18] and [5], so there are, intuitively, grounds fbr
optimism about single global-grid algorithms even though we present no extensions of the theory
to the non-self-adjoint problems we consider. The main disadvantage in condensing out interne-
diate scales is that the coarse grid. on which all optimal approaches require an exact solve, cannot
necessarily become as coarse as one might like.

The field of locally uniform mesh refinement is spanned by a continuum of resolution st rat,'gie
governed by clustering rules which control the size and shape of the refined subregions. (,dohJ
refinement lies at cne extreme and pointwise adaptive refinement at the other. As soon as the
global tensor product mesh is abandond a host of difficult practical decisions need to be mad,
about data structures and clustering algorithms. The logic required to handle the numerous lly,
m, Ubgrid-subgrid interactions which can arise and to insure the consistency of tile data st ruc, ire
is a significant impediment to efficient parallelism. In contrast. "horizontal" neiglhbor-n i gh h,r
interactions are simple. The sufficiency of a two-level approach in obtaining reasonable convergeno,,
iS drnonstratod in section 4. Cornpelling sri periority of approaches with a greater richness of eals
has riot vet ben frlly established in pro duction parallel software, although it may ho iltiiallv.

• • I | |5



EXp,";P10 ' ,on paralel C1 potltrs ui nd from a Iwo-levol ipproach will be beneficia In inc ,ii.fI,

3. Iterative domain decomposition algorithms

.As mentioned n t}!e introduction. preconditioned iterative methods and donain deconilpm-i,,t1
:)rvide a framework suitable for the aescription of wide class of algorithms. The four coin , i
oe~nenrs of this framework are: a global operator arising from the discretization of the P1DE ..
;vstoin of PDEs)c an approximate inverse, or preconditioner. for the global operator: ai tra
method relying only on repeated application of the preconditioned operator: and a geon-i,v-
based partition of the discrete unknowns so that size. locality, and uniformity can be exploitd
in applving the preconditioned operator. Since the numerical analysis literature contains ni;tv
sucessfui discretizaton schemes and iterative methods specialized for different operator propri,-.
1: C;n as the presence or absence of definiteness and syimevi. the recent burgeoning effi,r' in

i~orative domain decomposition algorithms has concentrated primarily (though not exclusively ,n
r,1e interacTion of the second and fourth of these elements. In the parallel context, this is a nu;ti ri
preocCupation because the bottleneck to parallelism usually (though not exclusively) lies it :1,n
r!uur,-ment of the global transport of information in the preconditioner.

I anv of the numerical examples described in section 4 rule out the use of iterative ri,,! h-
ods based on sym metry. but permit the assumptions ot definiteness and diagonal-dominanc,'. 11n
u-ariular. full or incomplete factorizations of subdomain matrices car, be undertaken wiTl.,,!

pivoting. Because ot its robustness, we join many recent users [13. 32. 38, 42] in adoptin, ,,
parameter-free generalized minimum residual (GNIRES) method [37] as the outer iteration. Ih,
main disadvantages of GMRES. i-s linear and quadratic (in iteration index) memory and execution
ie requirements. respectively, must be mitigated by scaling and preconditioning. For other ac-
ceratio:n s(chiemes. such as Chebvshev. the memory and execution time requirements may be only

constant and linear. respectively, but GNIRES dispenses with the difficulty of estimating param-
eters. The primary type of decomposition used herein involves roughly unit aspect ratio tiles. as
opposed .o thin strips. Ordering the interior points (and the physical boundary points other than

cross-points) first, the cross-points last. and the interfaces connecting the cross-points in between.
gives a nested-dissection-like "arrow" matrix appearance to the global discrete operator, which we
denote .4. The basic structure of our preconditioner B is the block-upper triangular portimn ,,
the arrow matrix. The application of B - 1 thus begins with a cross-point solve, which updates 'h,
right-hand sides of a s-t of independent interface solves. These. in turn, update the right-land
,'les of a set of interior solves. For a nine-point stencil, the cross-point result would also upri;,t,

he interior right-hand sides However. there is no dependence. within a single iteration. o)f !;o
iiiterfac;' solution upon the result of the interior solution, or of the cross-point solution upon ei-
ther. 'In T1 lt structurally symmetric arrow matrix preconditioners were compared against he

corresponding triangular forms on a variety of strip-wise decomposed problems. It is found thr,,in
that rotaininz the interior-to-interface coupling in the preconditioner generally reduces the ro. ,

u , rntr of iterations required to attain a fixed convergence criterion, but that the execution tin, i,,

1h;, stru'r rdly symmetric algorithm is greater. because of the cost of the extra set of sutdni:
yeiv-s in oath iteration. The first and second sets of subdomain solves are inherently sequeiI.,

The derivation of the coetfcients of the preconditioner blocks is as follows. The cross-p,,inl
fliliatiis ar, -implv t ,cflod co;arse (rid discretization of the continuous PDT. "hYSical lo r

p1wit, Ivi'l at tile co-rr rs are rot;ued in the -ross-point Ov5toi in order to u ot iitiOiilto first.,,' F
.e,',imiti or inix-, -'tiitiotis In this coars,4ridl discretization Weighted averaging possibilit

h ,'ri ti() f tft, ' c();L r I r r a,1- r. I f pf-dIQ r 0O froi I lI po e:o . is I of the cotFiciont it Id riat ::I

il, ,M %tir grid> -iirr(,ilitine ,ach cross-point, hut these aire not currentl ,v xploited. The,
inpi-, wt'titd 0t -,ipirts [.-bused (LfiisIias .ir-h itdi o on the (Oirs,-trttl svstertt. is ,
t, ,ii-! p;,r.illi ,rt k in thiPtrc ICihititifr in can e erfrttid in 0ithe r ,f twI, 'A,,, -:

f ii



rctfiill1tv onikli 'hrocf-ssor alfter fbro(fcaistlm, tii e reqiired coefficienit tlat i for snioll T-

or III a fullY klistl riblital fash ilot fore 5st.Avli5. De'teriniationi of thle most efficient tochllli
nrlydomiainl anrd lit-twork denendent. If strip decompositions are iisedf. t here Is no (()~

m I'iiad tie loe-i 1
tblock of thle precond it iorer is si mply tie( interface s vsteiii (ft t vih

I'lie, tile, interior equations conisist of fine grid1 discretizat ions of the PD L over ljoca;l n-* I

with ph li vsi call 'v ap)propriate bou011)darv coniditlions along, any t rue bound arv se-liments and I iil(
let lboundarv coniditions at artificial interfaces. Only first-order differences are acconmnodat- ii
lie, lp lsical hoiinda rv conditions of ie( precond it loner. even if ligher-order are em iplo ed illIo

Oomrtor A4. Thle cirent imnplement at ion se pports fril LU Gaussian elimination. i nconipliti I I-
decorn.i t~i or. or mrodif ied i ncorn jlete L' decor)mposition. Each tile performs, its int erior 1

co 1)1lo tely i-ndeponeniI~tl v.
I tili ke t lie coarse grid and( tile Initerior equations, which bear lie physical dIimensioiin

lin deny i ig PD E and have natural preconditionings. t he lower-dimensional i nterfacial equatlonht
prt penl denived front a related pseudo-differential operator, a t leoret ically well- dlevelop~ed a p,;t~

w- do n ot piu ie herc beca use of thle difficulty in a pplvinrg it to arbitnry prbes.nte
have, compamred three approaches referred to below as (a) tangential. lb ) trun~cated, and ( c in
Torobe. The tangenitial interface precondit ioner is the one-dimenisional discretization of Iltho a

he T in mderl vin- operator whiich remain when the dlerivatives rnormal to the intrerface alre -el

/ero. -Fhe tinricated itraeprecond itioiier is a discretization of the full underlyingoea1
Wvith thle coefficients associatedl with non-iriterfacial unknowns set to zero. The interfatce priol
p~recoititotier has been described elsewhere [.29] as a low-bandwidth approxim~at ion %) ti'

capaitane riat rix of tilie i nterfacial un knowns in the ambient miatrix corresponding, to thlel r'
Of freedoml of t lie Interface itself and the two subdomnain ;nteriors t ei thler side.

I1W di fft-reii co, between these t Iiroe ieclinque, tre p~erhaps most easily visualized bYco-
in~f 1 11 thPXam1ple Of Jan'ace's equation onl a iin iformlv- discret ized square partitioned by anli lilt erface t
pairallel to one( pir of edges init o suibdomai ns i and 2. tilie in terfacial unknowns being slibsc ript)I d ..

.11, anid .1,22 btli stidmit pror.et1.3arid .423 translate thle values oil the i n c -e
Ito the respective subdomnain bouindary Condition iright-banid side vectors. anod vice \ ersai for.1l

aliI Th ~arien il pecnd t onr is Itle t ri(ligorial matrix with diagonal elements - _ a
. uI)- and su por-dliaqonal elemenits 1. The tru ncated preconditioner is tile same except for -. I- i
1iTho dicagrmhi.i tie i nrerfac( piooe p it,!t .LC i hctr~.Cj~ preCond litioner Minus11 a diaiiot i

nat rix 'vccdemerits are those of thle vector [.413.1A1.413 + A4. 32 .7" 21 where t is ti v .... 1,
of al l I 'FiThe probe preconditiorier has the saine row sumil as lihe actutal Sch or complemniit niu I riN

for ~ ~ ~ ~ ~ ~ ~~~~~. -li'nefc.n cv.l ~ 1T'43-A 2 A2 4'23. These three lpreconiditioiier ma;trix I vpo-'

diffet1 -,in llong I lie (Iia gonal . withI thle elements of Ihe prolbe diagonal lYing bet ween tlie firs t t wo.

4. Numerical experimeints

I le o triemrica 1 experimtenits of this sect ion serve to illutst rate lie effectiveness of I lie I dol iI
dciv mi 1)0-nt ionl iet hiod(l.~eipl~ 1)0 dIn terms of the convergence of the iterali0ns anld also I lie
I Ii-t of t Iie locally untifonrmii niesi refiemnent in terms of the coriver-eice of the discrotizaition.

I . Model problems
'Ar pr'>eiit twlvr niodel lprolileni . each conitaitiingq a simngle (lep'iilerit varible and Iwo Hid'-

p-ndif'lo vaiale. li restriciion (It ie( iirber of varlibles leg, geealzt o WO wecoliitii
!)Il art rIt( outl -It .\Mhtilti le depitderit valriable cases have been exiiiined for stripwise docotu-

p( -It ioll ill '2 (l; i d v-l e po1n o o l, u r n r ,s p i t(I h ig riii n a b e u u

;)iI , )r It it~ t i ;ar d, ;111 dI cato ii II li .xtIens )iti of ou),r cuit -ronIt c IclitIiq ics It) t rt'ol-dit i tn i i I
tth tv - r;lIt-,j t I-, ar Ird, h)ot not t n; rce IsIrvl o 'lre,- ivo. Op)11t ia o r nea,;ir opima il i iIgo rlI It or()I



1); 0.0)

a1 I

10,10)

A01 (0.0)

Fig ure 5: Tho foutr timnal s considered in t his paper.

throf-dii on >Iot ii problemns are kntown which require a more implicit lower- riight cornor hi)ok w' !t
p r04)n di tioor, coutaiin g more t hani c ro-pointts alone- 1F4. 171. Wc have not Yet ox amlited twt

p4)-C(alevd -wir- bas ket' forms of the( pr corid jt olter. F-ront a. parallel perspective. t hey tr iS 4

add(itiontal seq nent ial overhevad, anid a careful consideration of the t radle-orts bet wet (i vrii

rate and cost per Iterat ions will b~e reqiin l-d in a fit iire stumdy.

Somne v4
.. Ite problents below are self-ad joinit andi couldi be (usc retized in a sV i tiet nC m o

andt( perhaps s;olved mor, chepaply with conjulgate gradients titan withI G.N RI ES ar mnain itist

howevver, is iii th mt tore extensible formulation. In all the exantples to follow except for t ho laiT

art exact solit tion of the( contti uniws problem Lti = f is speciflied. Front t his ?i. all of thIe folI wj i

soi rco termis f and hotindarv condition in hornov, 4 et i-ihe, rita': Ibe t
2 iculat-d. It cases whloT4o ih10

exprssotsfo i idy t esi Iiiettl s npe.ltvare writteit outt alontg wit hi tie( sol it ott. I l,

twelve probilemis include, fouir dlifferent (domtaints. pictired l i Figlire 5).

[Ite, first Iwo oxaniples. withl constant, Coefficients and an exact ,solutioit qpiidrati t; in h.41

inidopeitdoitt varialle are, ext retel ' siiiple and possess t ritcatit-error-frree secoitd - rder hiiio

(litferi-'tio represeittaions. They arte identical exct-pt for the ty Ipe of boindatrv coinditionts Iotte 44110,

,jIdo of their (pitarv domiaint. Those prob~lems ax not canitdi~ates for mosh refiiteittent rathlor. I 44

aire clto er to( show t ite deterioration it iotvergence rate cauised witeci lDiricll bouitdarv (omiilt 4

are replaced with \eittanu , and to allow conttrolled experinionrt at ion 4)i1 the effect of iintrcmi 01''

hottitarv rontditionis itt tte lprecontiitionter. IThe pocr cmvr'teof #2 t1iitt t itv preotidit utter,

of #I led to t lie decision to ex pantd the cross-point svstomt to itc p'4 hvsical omiolarY polint!1

het( general ca so.
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I'lle next I weo exalillpies I th lt irst two Fromi tilhe stand~ardi flmpinlatie lol 4 ilipli I(l,

lbrinli, ill limtl- l s, I t ll fiuienits t hie lat ior il ai loii-soif-aiijtirlt wayi. %l If ! I )jjli , ,

I rohiern 4,7) t'i-;nIjoinlt. ionl-conlstanit coefficiet. Iiricirlot h()uld;lries11.

Q =Ut -sqiiarn

1) rtIblitni 1: No ii-silf-adjoi lit .ioli-c0115taiit coefficient., Ro b In bou nd aries.
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Qunit squiare

1 he (,mai oive i> Hie outward normal.
lfie sevoh iih exam pie, from [1. 27] has a smoothi solution, but rapidlY varv %r IP, cootfi cit'? I,'

; Ill rna laeor. Here, the solu tion itself gives !iG hint of tire reqluiremnent of nnewh rofinitw
friI eestinglthle loca tions of rnaximnnm error in a in ifortniv refined discretizat ion of t lie, PL) ll

niot rwiio~cir at lire Internal layer itseifl. but towardstile interiors of the t-wo snbdominll If ~ 1
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p-V:-- +. - 0

r Or

where r = - 1)24 (y - 1)2

and 0-- arA,x - I) i(, -1 )), 0<- 27

Dirichlet (lara on C2

Q = [.-shaped igioli

SIe first of these corresponds to pire diffi!sion. and the ,econd arid third to convection in w;ird
tle re entrant corner, and away from it respectively, at a rate inversely oroportional t(, radi.-.
The respective values of 'he radial eigenfunction exponent o ar 2, 1 ,and approximate ly 10.01 12.

from the Euler equation formula a = c + 6 -1- J/2. The first two solutions of this ,rio ack

derivatives at the reentraat corner. The last is everywhere twice-differentiabl. but the P lit ,)
is characterized by steep variation in the three non-reentranit corner regions, where r > 1. l.,ai
mwsh refinement is critical to impl,. ,,ing tbe accuracy of a finite-difference solution. In addiioi 1(
refinement, it simple change to '' . finittc difference schemie in the vicinity of the reentrant corner s
maule that substantially improves the accuracy of the sol tion: this is described in more detail in

L2.
The eleventh example,. from [4. 27, illustrates now an irregular-shaped domain may for,:,.1

minimum granularity ,pon a tessellation compri.sed ot congruent tiles. For thc problem at hand.
the minimum granular: ,v is near the ideal one.

Problem #11: T-shaped domain.

V -1 - 2 cos(.I,,-

u(x.y) = 2 + y2 _ xe' cos(y)

Dirichlet data on OQ

T-shaped region

The last example. from [7], is provided to illustrte the accommodation of ,on-simply-cor, .: 11
dori us. .\gain, t he -, ometrv i mposes a liniun granularity on congruent tiles.

Problm #12: Two-hole dormain.

0(/ -x \(u\a ((. (wx y all
1 1-sin -)0 . -y I + sin - ( in +y

u = 0 on outer boumiidarv of O9.

- .r. ) ()1o hol, bound;)rv ,)f 09!2

Q = Two-hole r"ori

'r,ts 'tiV,, .uurfi, plio.,, of Ili, seltimi tot h,'s, I w -lv, probloin- ai- ( , ii in |"ii. r('s m Ti) .



Figure 6: Surface plots of the test prob~lem solutions: (a)

#1--3, (b) #4, (c) #.5, (d) #6. ((e) #1. (f) #11. (Note that
the solution to #11I is smooth: the apparent fronts are due to
zeroing the surface over the untdefined regions of thieT-shaped
dlomain.)

4.2. Parameters studied
Several ctatogorios of ox pori ment s are rep~orted. [-irs t, a t wo-di mension al parameter spac on )i-

- I it z of a ro drslto and ovorall imlform ) resol ittion is explored byIUreialepr ii
inT prooinm # 10. A non -restarted G NI Ii 1(5 algorith1m is used. lblock-t riangu larly precondl i nedi

%kith Itxact il th -lbudomiain intoriors aiti ott the, coarse grid,. and with tangent ial intr

fae olves. lere,. ais t lirotighout ths sI u. we ulse oxchnu Jvelv right, preconditioning anid antit al,

itrat i of /,iro. [Iii ,oail of thte:, expermiens is, i lhe evaluation of the al, __rthin over a range of i>

ohitionv. lin tertit of itoratiOtt count andI execifl 0 I int,. Cor comnparisont with It ick-of-tlte-ett lopfii

run Pl'~itvan a vss



pC

Figure 7: Suirface plots of thle test problern soluitions: (a)
#8, (b) #9, (c) #10. (d) #12.

.\notlir Set of exIprimen Its is performied oil problemTs #7-10 with the goal of evaluat inim, I hei

OeCOnOnlV of thle local refinement technique. "e show t hat local uiniform mesh refi nenment is ca pa hle
of Significant C'I V arid memory savings wii no sacrifcc of accuracy relative to ulniform reiieiin11.
hut th at I improving lie d isretizat on in simnple ways can be miore effective than considerable refi li-

mi.In a third set , we evaluate the eAec of (lecolnlosition orientation for non-uinit-aspect rat lin

iei>~ig lproblemi #1 . Thie limiting cases are the st ripwise decompositions lproviolisly coni -~
F 'red K is in 12!)! 11n alnot her, brief proof-of-concept section. we present re.,uits for tile comnplex

?,miakt probletti. #1 1 a nd #12. We then evauat different, precondit ioner opt ions than lie exatl

nt ep1 0 p 'olves, and tanigential intrc solves used in all of W le examplfles above. WithI exact ilterio

%l'' .W (COTl pateP three ldfferent initerfacial procndit iners, ind for tangentijal iiiterface solve,. weo

(orit[arv' three difrererit interior precotiditiners. Vlnall v. we com pa re our preferred opt1ions inti i

-t lo rflohal incomplete favtori,;itions for all of lie prolems which are posed oil s(Jiare doitaic .



# 2 -# 4 5 6 #8 #9 #10

1 4 1 2 1 5 1 NA NA N.\
_ 6 15 1:3 ' 2 20 12 11 

-1 32 11 24 1S 28 37 35 35 17 16 12
: 16 1 23 2-1 30 :39 32 :32 23 22 IS

16 S 10 17 22 27 31 25 23 16 19 16
32 1 - 7 13 16 20 24 17 15 11 12 10

64 2 - - - - - - -

12S I I 1 1 1 1 1 1

Table 1: Iteration count as a function of number of tiles

per side of circumscribing square, t. and number of mesh

points along a tile side. in, at constant refinement parameter.

h- l = 128. for a reduction in the initial residual of 10- 5.The

last two lines of the table are not available experimentally due

to minimum discrete subdomain size conventions in the code:

however, the last line consists of all l's by definition, when

The timings given below are from a Multiflow Trace 14/200 computer using 64-bit reals. All of

the code (primarily in C but with FORTRAN computational kernals) was compiled with the default

(-03) optimization and with version 2.1.3 of the compilers. Because of the varying performance of

hardware (vector, parallel. superscalar) on different problem sizes (due to different startup costs

and data dependency limitations), execution times are difficult to compare directly. The reader

should keep in mind while studying the results that different organizations of the code and different

compiler capabilities can account for large variations in times across architectures and software

releases. We have run the same experiments (to the extent supported by memory) on two other

Unix machines and find that the proportion of time spent in factorization and solution phases

varies widely between machines even though the relative rankings of total timings remain mostly

the same. In addition, replacing the nonsymmetric bandsolver in UNPACK used to solve the linear

systems with a custom nonpivoting routine produces a large benefit on one computer (a factor of

three reduction in time), but has little effect on another.

4.3. Convergence as a function of coarse grid granularity

In order to test coarse grid granularity over a large range, we fix the finest mesh spacing at

h1- 1 = 128 (relative to the length of the domain, whether that be 1 in the first seven problems. or

2 in the next three) and investigate the tradeoff between numbers of tiles and points per tile. as

shown in Tables I and 2 and plotted in Figure S. The mesh is identical and uniform for all runs

in these tables (with the obvious exception that one quadrant of it is not present in the L-shaped

domain problems, #8-10, which therefore lack single-tile entries). The convergence criterion is a

relative reduction in residual of five orders )f magnitude. Table I shows that the iteration collilI

peaks in tile middle of the granularity range. at either 4 or 8 tiles per side. The bottom row of

all l's can be supplied without benefit of actual experiments. since it represents a direct sole (on
a single grid. The top row entries differ fromn 1 in probleis where tihe preconrditioner has di fr, II

lower order) bouridary condi tionis than the operator A.

'1able 2 shows the deceptiveness of iteration coiit alone as a measure of overall perforiatice.

lIn eXecut ion t inle. the extreme runs. representing single-domain limiting cases, suffer (lue( to li(

high cost p)r iteration, even though the number of iterations re(quired is very small. This table is a

profo lnd ill stra t i of the title of [10]: I)o roairl l)(O ,mpositiot Br r(Jicial Lr( n .5(qt:l tiall l'. 'he
ireost favorable total sq1u 7i/tal execut ion t imils are found for null i-dolmaill cases iear t lie it eral i(l

141



m J# 2 #3 #5#4 #6 #7 #S #9 #1 o

1 128, 116 419 416 -t18 124 -132 .125 NA N.\ N.\
2 64 10.8 115 113 121 121 119 117 8-1 85 St
4 :32 30 :38 3-1 41 48 -16 4.5 25 25 23

16 12 19 20 25 31 27 25 11 14 12

16 7 13 23 23 42 27 23 9 1-4 12

32 4 17 32 41 55 70 47 35 36 21 17

Table 2: Execution time (sec) as a function of number of
tiles per unit length, t. and number of mesh points along a

tile side, 77, at constant h-' = 128. for a reduction in the

initial residual of 10- 5.

No. o; !eaot:ons Tctol Execjt:on Time (sec.1

20
200

02 6 2 4 E

Log of No. of Tiles on a sloe Log o; No. of Tiles on o sloe

Figure 8: Plots of Tables 1 and 2 (problems #1-10 super-
posed), illustrating that the minimum execution time serial
algorithm occurs near I = 16 tiles on a side, despite the large

iteration count at this gramlarity.

coiint maxima, in particular at 16 tiles per side.
The factorization of the banded matrix in the single subdomain case is the dominant contri-

bution to the overall time. In problems #1-7, over 410 seconds are spent doing the factorization

alone. Of course. one might not ordinarily employ exact solves on the single domain cases. ailt hou,lh

rnianv structural analysis codes do this very thing. A comparable penalty will accrue in an attom pt

to do exact solves on a very fine 'coarse" grid, in which each tile contains just one point. Itowevor.
tlie table of execution times is truncated beyond tile sizes of m = 4.

The behavior in Table 2 can be understood with reference to back-of-the-envelope coniplexi y
ostirmates for the solution and factorization operators of the preconditioner. \We observe thal th,,re

are O( f ) cross-point, interfaces, and interiors. Naturally ordered! banded direct factorization., i l

;yeIvs require 0( .\'b2) and 0( Nb) operators respectively. where N is the number of unknown., aid ii
tie hatdwidthi. For the cross-point system, A 1t and b 5 t; for the interfaces..N = In and i = 1:

aliti for lie subdomnain interiors. N = r2 ad b = M. Thus, the interface operation counts ar,

lwyvs isyptot icallv siibdonimiiat and can b omitted in the following. From choosing tle laro-er ,f
tli, cross-p,,int and interior compl,,xities, we see that factorization costs nax1 t m)( f1 ), O( '2 in)

aid "olvs cst rtaX(, , 1{O(t: ).0(t2n:1 )}. Since n = 128/f in these experiments. the first term
r0w,5 wiht IiIardt Ilie second d,,cavs wit it. Quick caicilations reveal that (to the resollit iti

15
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h-1 1 #1 #2 #:3 #4 #5 #6 #7 #S #_ #Io

L t1" 2 6 G to1 10 12 12 15 10 6 5 3

4 :32 1 t 19 16 17 2.1 31 21 12 11 11
S 6-1 12 20 22 25 29 28 23 17 14 16

16 j 1281 0 17 22 27 31 25 23 16 13 16,

Table 3: iteration count as a function of number of tiles per
side of circumscribing square, t, and refinement parameter.
h- l. at constant number of mesh points along a tile side.
n, = 8, for a reduction in the initial residual of 10- 5.

of the table) the minima for both factorization and solve costs occur at or between t = ii and
:32 when hI-  = 128. The tendency of buffer overhead, neglected in the estimates, is to favor a
sliaht ly smaller number of tiles t than thus estimated. It is important to note that the ineiorv
requirements follow the solve complexities above. Thus, for a fixed memory size, an intermediat,
coarse grid granularity accommodates the largest problem in core. Of course, all of thes, t'r
iteration complexity estimates need to be redone when the preconditioner blocks are other han
exact solves, for instance, incomplete factorizations. However. incomplete and exact factorizations
differ little in actual cost per iteration when the grid is narrow enough in the rapidly ordered
direction, which includes the case of small, square tiles.

4.4. Convergence as a function of tile refinement
In contrast to the previous section, we here investigate iteration count as a function of overall

resolution, for a fixed number of subintervals per tile. The results are shown in Table 3. The global
mesh grows in refinement from 16 to 128 as the number of points per tile remains constant at S . In
spite of the fact that the truncation error improves with at least h-'. we use the same convergence
tolerance of 10- 5 as in the earlier tables. The fine grid in the last line of Table 3 corresponds to
tie t = 16 case of the earlier tables.

The experiments suggest that the iteration count is bounded nearly independently of h. arid
thus that tile two-level algorithm is nearly optimal asymptotically in the constant m limit. In
fact, some of the finest mesh results are even relatively better than preceding coarser ones. This
should not be regarded as surprising, since there is a steep price for this favorable iteration count
when rn is held constant and h- is increased, namely, a larger cross-point system. We have not
pursued any theoretical justification for this bound. but the theory for conjugate gradient iteration
for self-adjoint problems, see, e.g., [6, 101. contains similar results, namely, constant upper bounds
on the iteration count for constant m.

AXs representative convergence histories, we present Figure 9 which follows the residual reduc-
tion over five orders of magnitude, and the time versus iteration count history for problems #1
and #2. The latter plots reveal the quadratic term in the GMIRES work estimate that coies
from the need to orthogonalize each iterate over a subspace whose size grows linearly in iteration
coint. This pair of figures also illustrales the poorer conditioning of Neumann problems. since he

initial iterates aid the solutions convergeid to are identical, and so are the operators except for one
Neurmain/ bolindary ,segmont,

4.5. Economies of local mesh refinement
lxamtpls #7 through #10 allow is to display the well-known benefits of local uniform rueshi

refinniernt in elliptic problems: cornl)arable accuracy in considerabl*v fewer operations, coipare,d
with global iniforiri reiinient. We solve thse problems at refinernent levels of h-- = 32. G 1. 12s.
and 2.-)C. based on the global grid, biit perform both glohal and local refinemenls for coniparo(m.

w her, p,)si[lo. (I Uh finest global refineme(nt do(es not fit into thi,, lieillorv available. which is. of

I G
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Figure 9: Converg-ence histories for problems #1 and #2. for
t=16, m = S h- 1 = 128. (a) an(I (b) show the normalizedl

Euclidean normt of the residual versus iteration count, and
(c) and (d) show time versus iteration count.

course. another of the main motivations for LUNIR. along with execution time savings.) All of
these computations were made with a reduction in the residual of 10' 5. so that the measure of the(
error would not be contaminated by the residiual. In all cases, the choice of where to refine is mde
by hiand. In a forthcoingi papler [23] we will show that the local error is riot always ad(iu t.,a
an indIicator of the optimal refinement location. s)ince we are interested in stuing how 1dorr;ii
dlecomposition antl nitmli refltinmnt interact, giveni a goodl refinement strategy, we elinminat e Ihli
latter qulestionl fromt thIiis St udy.

Tables 4 througTh 7 compare global refinement results on the left, and local oni the right. Each
,set of olii runs lists the irm hr of iiknowns. the slil- norm of the error, the number of i tera tiois to
rod uce thle dlisc rete residl by S orders of ni aigruit uue. arid the total exec ution time thus requiIre-d.
I lie righit-mnost col imII n ives the execuitionl time ratios for each refinement level. Nleniorv rise rat Iio
(-an also be 'st i ar d from thle tile st netire- of tie( discrete problemi, bitt thle preseti co ro~ cor(l it(
'x ph cit allim-at on iear 0& remnenits. All erit nies share at corista nt, vailue of t1 8 in order to fix reons01
of on iian cod refinemeont thIiat (ho niot shithk as I? (hoes. Therefore, tie( -global" iteration colii iii n
of Ta bles I t Iiroiugh 7 comnprise a con vergorice st ii dv which iscorniplemnerit arv to both Ta Hle I (iii
which b, is cotist antt) and Table 3 (ti which n) is conisutat).

17
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Figure 10: Refinement levels. The mamum (third level)
local uniform refinements. (a) Problem #7. (b) Problems
#8 and #9. (c) Problem #10. In second level tests, all tiles
showing "3" are set to "2". In first level tests, these are
further reduced to "1". In zeroth level refinement, all tiles
are set to "'0", which here corresponds to r = 8.

_ I Global Local R _ Ratio
rr1 I CG Tc NL CL IL TL -I ;/7T

32 1 1089 1.58(-4) 26 3.9 1089 1.58(-4) 26 3.9 1.00
64 8 122-5 3.95(-.5) 37 10.9 26.11 4.15(-5) 46 12.2 .s9

128 16 1664 1 9,89(-6) 53 51.1 5729 2.06(-5) 65 31.5 1.62
256 32 NA NA NA 18049 1.70(-5) 80 99.1 N\

Table 4: Number of unknowns N. sup-normi of the error
c, iteration count f. and execution time F (sec) for problem
#7 (internal laver). globally and locally refined, along with
,xeciution tinie ratios, for a redu ction in the initial residual
of 10- 8.

Ih,, bhavior of iteration count with eacn doublilng of global refinement in he se1f-d'.(l mIt
pro>blie s in I'ables I and 5 is consistent wi th the logarithimnic growth in condlitionii.g, with !h-I

proved for self-adjoirit problems in [,6]. 1'lie locally refined examples also worsen in con dili iiin1
with 11- I when, I is held con,.tant, b,.t the CPU time advantag o of local rhc irc .. ,, wilh
h-i. overall.
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G~lob~al LocalIt

nI T mn m nuI nn n m

/,-A n N1,; fL i 7 -I cL L I 1;"!)-L

S3 .3(2 -1 27 8:341 1.30(-2) 24 2.7 10

61 S :3202 8.30(-:3) :32 6.8 1518 8.30(-3) 35 6.2 I 1.10

12", 16 125.16 5.25( -:3) 4I 27.1 2410 5.26(-3) 37 7.6 .. 7

27)fi t2 NA NA NA 4746 3.33(-3) 41 16.A N .A

Table 5: Number of unknowns , sup-norm of the error

c. iteration count I. and execution time T (sec) for pro)lem

#3 (reentrant cornei. pure diffusion), globally and locally
refined, along with execution time ratios, for a reduction in
the initial residual of 10- s.

Global Local R- ]0 i

to (; r; Ic; TG ALCL L FL:I
2 1 31 G.97(-2) 2:3 2.6 83-4 6.97(-2) 23 2.6 1.00

61 3202 5 ( 2) :37 8.2 1818 5.66(-2) 31 3.7 1. 1-1

12S 16 1 1 i4. :2) 40 26.1 2110 .4.58(-2) 37 7.6 3. 13

2 -)6 312 N A- 4746 3.67(-2) 41 .5 N.\

Table 6: Number of unknowns N, sup-norm of the error

(. iteration count [. and execution time T (sec) for problem

#9 (reentrant corner, convective inflow), globally and locally
refined, along withi execution tine ratios, for a reduction in

the initial residual of 10-'.

Global Local Ratio

I? ri .V, AG .L C L 'I../TL

32 1 8 3. 7.3.5(-1) 22 2.-j 834 7.35(-1) 22 2.4 1.00
1 :3202 4.1.5(- 1) 28 7.7 1610 4.30(-1) 25 3.6 1..>

12 I' 16 125-16 2.19(-1) 34 21.5 4698 2.40(-1) 29 8.5 2.53
;75 :2 NA NA NA 17018 1.9(-) 3.5 51.6

Table 7: Number of unknowns A., sup-norm of the error c.

iteration count I, and( execution time T (sec) for problem #10

(reentrant corner, convective outflow), globally and locally
refined, along with execution time ratios, for a reduction in

the initial residual of 10-8 . The error values here appear

large, but are in fact small relative to the size of the solution.

T}he sup-norm of the error shows sublincar improvement in h in problems #8 and #9. as ie

expcts witli non-differentiablo soliitions. The second-order accuracy of the discretizat on is reiilv

ap pa rent th t ratio of errors is almost ,xactl v I with each reduction of h by 2) in problel #7. and

ie first- rdor accurate troatuient of convection in problem #10 leaves its signature as well.

In Table S we show tlie henefit of rediscrotization of tli tiles surrouiiding the reentrainit cornir

ii problenis #S and #9 to fit the discrete solution to tlie known power-law radial (lepene(nce (I

He sin g uar exact solitotin (see tie problom statenien ts above). Rather than making tie customiiarv

Ta vlor series assi ipt ions. we take ( r) = 1/()+ G'7-' + br2 . where P is derivable from a local analvysis

211). F'igure 11 displays Otdr) along tOli ray 9 ; which is the symmetry axis of the thre,
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Figure 11: Cross-sectin of I( r) along, the symmnetry axis.
(at) Problemn #8. pure diffusion. nion-differentiabhle at r = 0.

b) P roblemn #9.c caved iye in flow, strengthening the si ngu1-
laritv. (c) Problem #1[0. convective outflow. eliminating the

_______Problem #8 ____ _____ Problem #9 _____

*r 4 [4 T4 1 CA/cL CA 1A T-4  CA .

:32 - 1.63(-3) 23 2.35 .13 2.16(-2) 21 2.2 .:31
611 1.04(-3) 61 13.5 .13 1.88(-2) 35 . .33

126 32 6,66(--A) 641 1.5 1 1.6 1(-2) 36 71.0 .33
25____ 32 l426(-4) 1 7 2. 13 1.33(-2) 39 13.1 .36

Table 8: Sup-norm of the error r. iteration count 1, and
execution time T (sec) for problems #8 and #9 local]y refined
with asvymptotic fitting, along with the ratio of the error to
the corresponding local entries without asvmpi otic fitting in
Tables 35 and 6.

1.-sb aped p roblonis.

4.6. Numerical compromises associated with domain geometry
Thei domains of problems #11 and #12 provide an interesting test of the tile decomiposition>.1

ad voca ted herein becauso t hey can be nmore simply described with less restrictive decoiposit ions.
For liint nce. If the only restriction on the decomposition was that A subdomains had to be recf a ii-
gular. HIto first hlas, a two-subdomain. and the second a Five-subdoinain decomposition. InI coifl r;tst
or~t r n iform-size (lecont posit iouts requtire a it mittrm in of 48 andl 2:3 tiles respectively. However. ho-
ca tso t he Neii nnii bou ndary con dit ions of # 12 require a mi nimuiti stencil width for thle ndit rse
cgridl solvo in lhe p recondlitjotter, we mu ist fitrt her bisect (in each coordinate (Iirect ion ) olbtat 11111 a;
92-tile decouniposition. ('onvergorice resuilts for somie contstant h Iiiiiscretizatjolts aro given inLi105'
attld 10.

Though1 domlain eorute try prohbhits inuich exlplorat ion of grainuilari ty p~arameter space. we; no(te,
that: (a.) t li praictical grati itari ties are n t to range fou nd most, utseftul for pioiulenis #1 i (p ini

TFables I and 2: (bh) thle nun hr of ltror('ssors availablo itt a tYpical ntodititt-scale parall1el cornpitlI er
sav 25 throu ght 2' j is appropriatte for eosselIliiig sh ap1)0 such as these, which. whlin allowed ito

20)



16t S 1 2 (i.9
32 -4 i 0 16.8

Table 9: E~xecttion timle (sec ) as a function of nit tither of
des per tinit IengthI, t . ani( ninoer of miesh polints aloti" a

ille side, in. at constant h'I 128. for a reduction In the
mii al resi diil of 10-r' on problem # 11 (T-shaped (lonlaiti.
There are 12546 unknowns.

t in1 7
10 16 99 176
20 8 s2 2:39

40 t 0 1 12

Table 10: Execution timle (se(cit a fl n('to iotttf 1t t111t1 hr of
tiles- oti a silde. t, and wniher of niesh politis alontg, a IIIe
side, !!. at conistanit /- 160 siil)ittervals onl a sItde, for

areduticion in the initial resitlual of 10' ot)t ;f12.em
Note that the two-itole donmain of this example is Ini ?0. l0I x

0- 10[ ). There are *2i001I i kntowns.

11tii lit #1 1#2 f#3 #1 1 #5 #6i #___4S

F'at 'Flgi' 1:3 23 2- 0 :39 1 32 2:3 22)

F-xat ct 'Fr iin. 92~ 16 5 196 1757 136 G66 6 G

11.* I~ Ta myn - 2fI 2S 7 1 213

I L V>1o Taig. __3 S_ 61- :3 29

Table 11: Iterationi count for diM [reen lrecond~itioner Ihlock
comb i nat ions at constant refinement paramieter. /? - ::-: 12S
arid tessellation, I m. = 16, for a reduction )in the inil-
tial reSi 1i1(i1 of 10-5. G NIRlES was res tarted after every 100
iterations. -- idicates that thle i terat inni hial niot con verged
after 500 steps.

1;til(r -ot quta~i-utttforrti distortion. are siifficietitlv genieral for a. large class of typicaltwdiem ita
t''rt appdthlic'ations: and~ (c) the quiasi-tiniform tiles represent qutasi-iiiform quanita n 'un

fttr a cnn vetli etic Itt load-imhaltcillu t ha;le lefs restrictive 111iwil ltmtessella tioti>' do to t h

It 4titiltl he imted that these, prolflenis arn alternat ively solved very successfully hvetitl
lfitto th It irctitucrihitig stiaros. and using, precondlitioi'?r. has'ei ott fast solves onl thle Sqtar'-. 'mt
what 1i) kttowt a>, tie capacitance mlat rix met hotl (See,~ .g.. [:31] ). cotmplex dolmains are ttftii t('tI#

Vca telitlat for ettiil~lding, precondit imiers hi;t i for decomtpositiotn prec~ouiliotiers ItII letiit )f 11

'tze of tit ciipat'itallumtce 4il (see. (.g., rs). W\o iote ithat eit her applroatch cant 10,( to efffot iv*
1;ir;illol-t. irtco roauhillv pairalleIvheil fa,,t stilem's exist [12].

41.7. Tests of algorithmic comnfations
Iaihlt I I antI 12 explore diffor-tit algorit hutic tiitttlaiiotts fori t~ pittcotlilitiitut l~

'21
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l'vit it. 11 ' 2 9 221 12 1'

ILI" I I 1 ii'.22 1 220)

%I]) 1 . 2: 6T 9 2 20) 2)

Table 12: 1'xoi,iiti Tito l>i fiur diff iit priiiilu~i~iiiir

1l1I)ck iirrunthl-d il~lltrvfti' rtw plirailiwter. lo1 
1

'- ;m ) 7 I .F) ; e u to i ~

\\~ ttiiti t h1t thu. Iii di. lll iuilil uul '.i. or i.Irtt Il \ ' ef ' 1'iY f.ir i fll. i ll t

ii uih i~ rii ' iit 1- ft10 1i' itt, 'tt m t Ii I I vfit r l? f4 I o i ruhh tI (- c f ( I I I ' l i p

fth ' I r'i'iitii. u I )f -arch di'i9 re cio ns mi. v~i 3u rtoiniil w I li rtiillttl w diilih'l:1,i

t i'r~ i tiut i i d hiitli. riii,- t.I phiitTl~II thu I'm.iit if1 h' ii lf Iutol lu 11 I. !1
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2 # / I # /5) if
t- -

1 2 107 109 f47, 10-5 109 1w) I W; I 11I

10 1 l l 11 )' 10." I~1 iY1)) 11) 1 13
2 2 1i0"- 1 17 1 1:t 1,21 1I 11 3 1 : 1 12 1

I '2,, 3 1 2-S 271 30 30C 2 33
I , 21 :33 : 301 30 3v; m

" 1 ii9 91 12 1ii 1(0 1
2 II t> 2) 9 12 1 201 12

6 1 1 23 7 ) 15 231 20

1! ~ :2 5) . 1. 2!) 11 12

Table 14: 1 xocutiI)l Iimno La);.a functioni of 11111ithir

of tjil'> el 'l' f)i/ontL;d ;m 411 (q lt I 'j1 of circlulIH criiniz

;)I414. 1 (olII>IHIII rii1411Iit )Iule!./ 1 
- 1' for

11, 1 1, 1 r i IvI I 0 i I( ra>~ I 4 I ol , d I' c; I t I a I Ito i>

era? loll had14 Hlo) (oil V."n,' after .700 1t

Ieuloll Al #1 2 T #--t1I#I #r# #7
2 2 19 1 3

(doba/II - _ 1'___G__ _6

T1le/ Fx;i 13 23 21 .3 329 32

TalIe 15: 1torailo olm iOFor jproloims 4,1 7 for ; i gl(,m

t1io .U'd(0)-pR Feoiliid 1 1l 4NICI 2II(al 11.1( I) -1)rIldi.l~
("MiIF4i forI itS mur ift I je 'xacl t foit a jhIvtoi'l-

I ..f( )r at r(,( I I t i sIitI iii Ia ;I i I1 ; I i I I I 0M

I') 31 :1)) 2G1

Table 16: Ex4Lctti(i timeiL (-wc) '(L I o r ooi(4 w't f1 7 For ;I

!2do14;4i ;IIIt);oihoe ( NII1$ a tb(14 11.1'(1 )

LitljflIIL'(i (; 1 IH VS o fb = . LLLj 1G). at 14110l Ilt! i ll

tIi b- . 12" . f(r ai (rou trim i ft tho ltiiliii reolhiii Il 10

a. oiichv-jons and fNtutre dirk-ct7us

Ixj'iLI 111'tL t, o I .L di )f p- IjoLLI( (LI 11,11i1 tl'L t I*;[If' : 111;1tI I ill I, IL\4 Iitu i p-4 -LI



a i, rea It deal of flevxlilI:tIv i ii refi IeI IIt[t si raiegcv, whiile i o perr I IIt tifrIg a dIat a stru-IIct tre i ioirtblIe
lo pa ralle! aiil voctor III) plemieiit at ioiis. aI,- S1ill Mii 'j/('( "iiid closiiig be~low. Althloughi often riioli

va! ed by parallelizat ion. (lolnalin decoiiipositiloii may~ also vieldl rinit ile and l memorv use liwfit,

;u-, ai sequential prograumiiiig paradigii. 1ur iiitermore. tite simple struictuire of individual Iblock5 of
Iie( doniain-decomposed precoiidit loner means t hat new applicatioins are found for tit( "''saniilAr

(1vr il coriveri tI mmi software libraie.
Ili I(traditionial ecoilotilje.s of local uiiforiir1 mel(sh refinlemiieitt can be straight forwardly iii(olp&)-

ralted jito the lolijill decomnposit ion framework at thet( price of inrt erfa( e handlers with Ii oni li i

for rie! niiient diffeOrences bet ween adjaceiit subdlomfaiiis. Because of the highly modular ni tm, di
a ;ian lard ized tile-oriented domain decomiposit ion codle. customn (iscretizatious for cert ili i>

of n,_,ula ri ties ma)Y be archived into a ppl icat ions libraries for reulse.
I'lie ile alorit in demonstrated her-ein inl at superscalar mode onl a MIuilti flow coiiipu ilis

a mna ble to vect orizatioo fin ei ther of' two ways. 'The( regulnr operation seqiieinces oit il( I (Ii> if-

p rodluct iiubgrid a rrays are precisely tilie type for whiclh vectorizi ug comipilers were coticci ved 11
vector, len uthls depend onl tile p~recise form of solver-s uised in the fprecon(Iit ioner. h)it would tend t
be, rallir smaill for the( rows of Individual S x 8 or 16 x 16 tiles found biest ili the txko-diliniisiu,ii;I1

a ppi ications; above. Ant alternative fortin of vect orization caii be realized by gr'oupinga toget l''r Ill
IIof a ive f. discrete) size anid shiape and opieratintg inl lock s;tep onl correspondinig eleiucen IIIi

eolih tile. 'Issuriing ant Ideiitical solver is apliiedl to eicli .A vector in this afprioach conis*s of, Ithe

I el nien tl from each of the( so bdomiis. Onur S x s arrays of tiles would be thus b~e OJpt iiial fori

ninii lies wit I a vector lent h of 641.
1Parallelizat iou requires carefuli attention to tie( load balalicer/mapper arid also to thle coa;rse(

" rid olve ill lie pr-ecoriditionier. Some coniplexi iv estimates p~erta1iingtoaertiefms f
th ~le a erm mav be found iii [2-1]. The imin disadvantage of the two-level algorithm in the Itil-allel
conteixt Is th1iat the choice of coarse grid gramularitv is even more of an -nver-deteriried' problem
ha i in seriail. Coininu nicat ion c-ost per Iteratioun amid con vergence p~rop~erties p)otentially ii\il

atoa inst the lower bouids(1 i mplosedl by domani geoiiiet rv. solution and coefficient srnoot hi ess. a ii

parallel load balaiice. Ilue k-ey (eterl ntI loll for fut ire- applications of tile tile inethodolxt,. will

be whbet her th is over- determii ntioii Is coniiustenit inl pra ct ice. hiasm ucli as tilie exam ples heremin re,

represe!- atiye of sinl-mlpnetvariable problemls, and parall l ticatiloii costs gell ra1ly
conmiprise a relat ivel v smaill b propomtilou off the total wor-k inl coupled mul11ti-coinponleni t pohilunis.
there, cure ubstantial irrourds for optiniismi that this will be the# case.
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